Determining Optimal Number of Samples for Constructing Multivariate Control Charts
نویسندگان
چکیده
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Normally, an average run length (ARL) is used as a measure for evaluating the detecting performance of a multivariate control chart. This has a direct impact on the false alarm cost in Phase II. In this article, we first conduct a simulation study to calculate both in-control and out-of-control ARLs under various combinations of process shifts and number of samples. Then, a trade-off analysis between sampling inspection and false alarm costs is performed. Both the simulation results and trade-off analysis suggest that the optimal number of samples for constructing a multivariate control chart in Phase I can be determined.
منابع مشابه
Determining Optimal Number of Samples for Constructing Multivariate Control Chart
Usually, there are two phases in constructing a multivariate control chart. Phase I is to estimate the in-control process parameters and to establish control limits using historical data. Phase II is when the control limits are used to monitor the process. This paper focuses on determining the optimal number of samples in Phase I since number of samples affect the cost of quality control in pra...
متن کاملDetermining the Sample size for Estimation of the CCC-R Control Chart Parameters Based on Estimation Costs
In today's highly competitive industrial environment due to fast technology development, quality practitioners will to detect out-of-control situations and take actions whenever is necessary as soon as possible. Accordingly, new statistical procedures have been enhanced incessantly both to handle high yield processes along with looking for methods of minimizing all quality cost. CCC-r chart, th...
متن کاملEconomic Statistical Design of Multivariate T^2 Control Chart with Variable Sample Sizes
Today, quality improvement and cost reduction are key factors for achieving business success, growth and position. One of the primary tools for quality improvement and cost reduction in online activities of statistical process control is control charts. As the need for monitoring several correlated quality characteristics is extensively growing, the use of multivariate control charts become...
متن کاملOn the multivariate variation control chart
Multivariate control charts such as Hotelling`s T^ 2 and X^ 2 are commonly used for monitoring several related quality characteristics. These control charts use correlation structure that exists between quality characteristics in an attempt to improve monitoring. The purpose of this article is to discuss some issues related to the G chart proposed by Levinson et al. [9] for detecting shifts in ...
متن کاملApplication of Multivariate Control Charts for Condition Based Maintenance
Condition monitoring is the foundation of a condition based maintenance (CBM). To relate the information obtained from the condition monitoring to the actual state of the system, it is usually required a stochastic model. On the other hand, considering the interactions and similarities that exist between CBM and statistical process control (SPC), the integrated models for CBM and SPC have been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 40 شماره
صفحات -
تاریخ انتشار 2011